12. LIST OF SYMBOLS AND ABBREVIATIONS

In the following list the English alphabet precedes the Greek alphabet, and lower-case letters precede upper-case letters. As a general rule, upper-case letters have been used for quantities expressed in decibels, for example w_t is transmitter power in watts, and W_t is transmitter power in decibels above one watt. When the upper-case symbol is the decibel equivalent of a lower-case symbol they are usually listed together. Symbols that are used only in an annex are defined at the end of the appropriate annex, in Volume 2.

Sometimes a symbol may be used in quite different contexts, in which case it is listed for each separate context. Subscripts are used to modify the meaning of symbols. The order is:

1.	Symbol without a subscript	h
2.	Symbol with a subscript, (letter subscripts in alphabetical	h _r
	order followed by number subscripts in numerical order	h ₁
3.	Symbol as a special function.	h(x)
4.	Abbreviations.	ht

Following each definition an equation number or section number is given to show the term in its proper context. Where applicable, reference is made to a figure.

Throughout the report, logarithms are to the base 10 unless otherwise noted.

- Effective earth's radius, allowing for average radio ray bending near the surface of the earth, (4.4) figure 4.2.
- a An equivalent earth's radius which is the harmonic mean of the radii a and a (7.10).
- The radius of a circular arc that is tangent to the receiving antenna horizon ray at the horizon, and that merges smoothly with the corresponding arc through the transmitting antenna horizon, (8.9) figure 8.7.
- a Effective earth's radius factor corresponding to D, (8.15).
- Radius of a circular arc that is tangent to the transmitting horizon ray at the horizon, and that merges smoothly with the corresponding arc through the receiving antenna horizon, (8.9) figure 8.7.
- a The axial ratio of the polarization ellipse of a plane wave, (2.11).
- The axial ratio of the polarization ellipse associated with the receiving pattern (2.11).
- a The actual earth's radius, usually taken to be 6370 kilometers, (4.4).
- a Radius of the circular arc that is tangent to the transmitting antenna horizon ray at the horizon, and that passes through a point h kilometers below the transmitting antenna, (8.8) figure 8.7.
- Radius of the circular arc that is tangent to the receiving antenna horizon ray at the horizon, and that passes through a point h kilometers below the receiving antenna, (8.8) figure 8.7.

- A Attenuation relative to free space, expressed in decibels, defined as the basic transmission loss relative to that in free space, (2, 20).
- A a The long-term median attenuation of radio waves due to atmospheric absorption by oxygen and water vapor, section 3.
- A ar, A at For transhorizon paths, A = A + A ar, the sum of the absorption from the transmitter to the crossover of horizon rays and the absorption from the crossover of horizon rays to the receiver, section 3.
- A Total absorption attenuation within a cloud, (3.13).
- A Total absorption due to rainfall over a given path, (3.7).
- A Rate of attenuation through woods in full leaf, (5.18).
- Diffraction attenuation relative to free space at an angular distance $\theta = 0$ over a smooth earth, section 9.2.
- A(v, 0) Attenuation relative to free space as a function of the parameter v, (7.2) figure 7.1.
- A(v, ρ) Diffraction attenuation relative to free space for an isolated perfectly conducting rounded obstacle, (7.7), figure 7.3.
- $A(0,\rho)$ The diffraction loss for $\theta=0$ over an obstacle of radius r, (7.7) figure 7.4.
- B. The parameter B(K, b) corresponding to the effective earth's radius a, (8.15).
- $B_{1,2,t,r}$ Values of the parameter B(K, b) that correspond to values of $K_{1,2,t,r}$, (8.13).
- B, B Defined by (8.2), (8.13) and (8.15) as the product of several factors, combined for B, B convenience in computing diffraction attenuation.
- B' Any point along the great circle path between antenna terminals A and B, figure 6.3.
- B(K, b°) A parameter plotted in figure 8.3 as a function of K and b°, (8.2).
- c Free space velocity of radio waves, c = 299792.5 ± 0.3 km/sec.
- C1 (K1 b°) A parameter used in calculating diffraction attenuation, (8.1) figure 8.4.
- $C_1(K_1, b^\circ)$, $C_1(K_2, b^\circ)$ The parameter $C_1(K, b^\circ)$ corresponding to K_1 and K_2 , also written $C_1(K_1)$ and $C_1(K_2)$, (8.11).
- $\overline{C}_1(K_{1,2})$ The weighted average of values of $C_1(K_1,b^*)$ and $C_1(K_2,b^*)$, (8.11).
- CCIR International Radio Consultative Committee.
- d Great circle propagation path distance, measured at sea level along the great circle path determined by two antenna locations, A, and A, figure 6.1.
- d Clearing depth in meters, defined as the distance from the edge of woods to the lower antenna along a propagation path, (5.19).
- de Effective propagation path distance, a function of d, f , h , and h re, section 10.1,
- d_L The sum of the horizon distances d_{Lr} and d_{Lt}. In section 10, d_L is defined for a smooth spherical earth of radius 9000 km, (10.2) and (10.3).
- d_{Lr}, d_{Lt} Great circle distances from the receiving and from the transmitting antennas to the corresponding horizons, figure 6.1.

- d sr, d Distance between the receiving or transmitting antenna horizon and the crossover of horizon rays as measured at sea level, (6.20).
- d_{sr}^{i} , d_{st}^{i} If θ or θ is negative, d_{sr}^{i} or d_{st}^{i} is computed (6.23) and substituted for d_{sr}^{i} or d_{st}^{i} in reading figure 6.9.
- d The theoretical distance where diffraction and scatter fields are approximately equal over a smooth earth, (10.1).
- d The greatest distance for which the attenuation relative to free space is zero, (5.10).
- d₁, d₂ Distance from the transmitting, or the receiving antenna, to the crossover of horizon rays, measured at sea level, figure 6.1.
- d₁, d₂ Great circle distance from one antenna of a pair to the point of reflection of a reflected ray, figure 5.1.
- dB Decibels = 10 log₁₀ (power ratio) or 20 log₁₀ (voltage ratio). In this report, all logarithms are to the base 10 unless otherwise stated.
- dBu Decibels above one microvolt per meter.
- dBW Decibels above one watt.
- D Divergence coefficient, a factor used to allow for the divergence of energy due to reflection from a convex surface, (5, 2).
- D Diameter of a parabolic reflector in meters, (2.7).
- D Great circle distance between transmitting and receiving horizons, (6.17), figure 6.1.
- D A function of d , d used in computing diffraction loss, (8.16), figure 8.8.
- e, e the principal polarization component e of a complex polarization vector e, section 2.3 and annex II.
- A complex vector $\overrightarrow{e} = \overrightarrow{e}_{p} + i \overrightarrow{e}_{c}$, section 2.3 and annex II.
- f Radio wave frequency in megahertz (megacycles per second).
- f(ν) A function used in computing path antenna gain, defined by (9.13) figure 9.7.
- Fo The correction term Fo allows for the reduction of scattering efficiency at great heights in the atmosphere, (9.1) and (9.7).
- $F(x_1)$, $F(x_2)$. Functions used in computing diffraction attenuation, (8.1) and figures 8.5 and 8.6.
- F(θd) The attenuation function used in calculating median basic transmission loss for scatter paths, (9.1) figures 9.1, and III.11 to III.14.
- g_r , g_t , G_r , G_t Maximum free space directive gains for the receiving and transmitting antennas respectively, $G_r = 10 \log g_r$ db, $G_t = 10 \log g_t$ db, section 2.2.
- g_{r1}, g_{r2} Directive gain factors defined for each antenna in the direction of the point of ground reflection, (5.1).
- The maximum value of the operating gain of a receiving system, (V.7).
- g. The directive gain for one antenna in the direction of the other, section 5.1.
- g₀₁, g₀₂ The directive gain of the transmitting and receiving antennas, each in the direction of the other, assuming matched antenna polarizations, (5.1).

- A frequency factor used to adjust predicted long-term variability to allow for g(p, f) frequency-related effects, (10.6) figure 10.3.
- $g_{\star}(\hat{r})$, $G_{\star}(\hat{r})$ Free space directive gain of the transmitting antenna in the direction \hat{r} , see also $g'_{t}(\hat{r})$, $G_{t}(\hat{r}) = 10 \log g_{t}(\hat{r})$ db, section 2.2.
- Power gain of a transmitting antenna when the power input to the antenna terminals g, is w' watts, section 2.2.
- $g'_{\bullet}(\hat{r})$, $G'_{\bullet}(\hat{r})$ Power gain of a transmitting antenna in the direction \hat{r} , $G'_{\bullet}(\hat{r}) = 10 \log g'_{\bullet}(\hat{r})$ db,
- The maximum free space directive gain relative to an isotropic radiator (2.5). G
- Path antenna gain, the change in transmission loss or propagation loss if hypothetical loss-free isotropic antennas with no orientation, polarization, or multipath coupling loss were used at the same locations at the actual antennas, (2.14).
- Path antenna gain in free space, (2.17). G_{pf}
- Path antenna power gain, (2.14). G PP G(h)
- Residual height gain function, figure 7.1.
- $G_{-}^{1}(\hat{\mathbf{f}})$ Power gain, in decibels, of a receiving antenna, (2.4).
- $G(\overline{h}_1)$, $G(\overline{h}_2)$ The function $G(\overline{h})$ for the transmitting and receiving antennas, respectively, (7.5).
- $G(\hat{r})$ Directive gain of an antenna in the direction $\hat{\mathbf{r}}$. The maximum value of $G(\hat{\mathbf{r}})$ is
- Directive gain, in decibels, of a receiving antenna in the direction \hat{r} , (2.4). $G_{\perp}(\hat{\mathbf{r}})$
- A function used in computing diffraction, (8.1) figures 8.5 and 8.6. $G(x_{\lambda})$
- GHz Radio frequency in gigacycles per second.
- h Height above the surface of the ground as used in (3.10), (3.12).
- Height referred to sea level. h
- Equidistant heights of terrain above sea level, (5.15), (6.10).
- Height of the receiver or transmitter horizon obstacle above sea level, (6.15).
- Height of the intersection of horizon rays above a straight line between the antennas, determined using an effective earth's radius, a, (9.3b) and figure 6.1.
- The height h or h is defined as the height of the receiving or transmitting anh , h tenna above the average height of the central 80% of the terrain between the antenna and its horizon, or above ground, whichever gives the larger value, (6.11).
- Effective height of the receiving or transmitting antenna above ground. For h, h, less than one kilometer $h_{re} = h_{r}$, $h_{te} = h_{t}$. For higher antennas a correction Δh
- Height of the receiving antenna or transmitting antenna above sea level, figure 6.1, h, h (6.11), (6.15).
- Elevation of the surface of the ground above mean sea level, (4.3).
- The heights above sea level of evenly spaced terrain elevations between the transmitter and its horizon. (6.11).

h Height of the crossever of horizon rays above a straight line between the transmitter and receiver horizon obstacles, (9.7) figure 6.1.

h₁, h₂ Heights of antenna terminals 1 and 2 above the surface of the earth, figure 5.1.

hi, hi Heights of antenna terminals 1 and 2 above a plane tangent to a smooth earth at the bounce point of a reflected ray, (5.8).

Average height above sea level, (5.15).

Average height of the transmitting antenna above the central 80% of terrain between the transmitter and its horizon, (6.11).

 \overline{h}_1 , \overline{h}_2 Normalized heights of the transmitting and receiving antennas, (7.6).

h(x) A straight line fitted by least squares to equidistant heights above sea level, (5.15).

h(0), h(d) Height above sea level of a smooth curve fitted to terrain visible to both antennas, and extrapolated to the transmitter at h(0) and the receiver at h(d), (5.17).

h_i(x_i) A series of equidistant heights above sea level of terrain visible to both antennas, section 5.1.

H The frequency gain function, discussed in section 9.2.

 $H_0(\eta_s < 1)$, $H_0(\eta_s = 1)$ Value of the frequency gain function, H_0 , where the parameter η_s is less than or equal to one, respectively, (9.6).

 $H_0(\eta_s = 0)$ The frequency gain function when $\eta_s = 0$ which corresponds to the assumption of a constant atmospheric refractive index, figure 9.5.

Hz Abbreviation for hertz = cycle per second.

K A frequency-dependent coefficient, (3.8).

K A parameter used in computing diffraction attenuation, K is a function of the effective earth's radius, carrier frequency, ground constants, and polarization, figure 8.1 and annex III.4.

A frequency and temperature-dependent attenuation coefficient for absorption within a cloud, (3.13) and table 3.1.

K₁, K₂, K_r, K₈, K_t Values of the diffraction parameter K for corresponding earth's radii a_1, a_2, a_r, a_8, a_t , (8.8) to (8.13).

K(a), K(8497) The diffraction parameter K for an effective earth's radius a, and for a = 8497 km.

K(f_{GHz}) A frequency-dependent coefficient used in computing the rate of absorption by rain, (3.9a) and figure 3.8.

1 er, L er The effective loss factor for a receiving antenna, or the reciprocal of the power receiving efficiency, (2.3), L = 10 log 1 er db.

L, Basic transmission loss, (2.13) and (2.14).

L_{bd} Basic transmission loss for a diffraction path, (7.3), (7.4).

L Basic transmission loss in free space, (2.16).

- L Hourly median basic transmission loss.
- Ebsr Reference value of long-term median basic transmission loss based on forward scatter loss, (9.1).
- L Calculated value of transmission loss.
- L Polarization coupling loss, (2.10).
- Reference value of hourly median transmission loss when diffraction and scatter losses are combined, (9.14).
- L. Reference value of hourly median transmission loss due to diffraction, (9.14).
- L, An "equivalent free-space transmission loss," (2.19).
- Loss in path antenna gain, defined as the difference between the sum of the maximum gains of the transmitting and receiving antennas and the path antenna gain, (2.21).
- L. Transmission line and matching network losses at the receiver and transmitter.
- Path loss, defined as transmission loss plus the sum of the maximum free space gains of the antennas, (2.12).
- L The system loss expressed in decibels, defined by (2.1). System loss includes ground and dielectric losses and antenna circuit losses.
- L Reference value of median forward scatter transmission loss, used with L to obtain the reference value L (, (9.14).
- L(q), L(0.5) Long-term value of transmission loss not exceeded for a fraction q of hourly medians; L (0.5) is the median value of L(q), section 10.
- $L_b(q), L_b(0.5)$ Long-term value of basic transmission loss not exceeded for a fraction q of hourly medians; $L_b(0.5)$ is the median of $L_b(q)$.
- M Liquid water content of a cloud measured in grams per cubic meter, (3.13).
- MHz Radio frequency in megahertz.
- n Refractive index of the atmosphere, section 4.
- n The ratio a/δ_t or β_0/δ_r used to compute \hat{n} , (9.12).
- n Atmospheric refractive index at the surface of the earth, (4.1).
- n A parameter used in calculating path antenna gain, (9.12).
- N Atmospheric refractivity defined as $N = (n-1) \times 10^6$, section 4.
- N Surface refractivity reduced to sea level, (4.3).
- N The value of N at the surface of the earth, (4.1).
- $\hat{p}(\hat{r}), \hat{p}(-\hat{r})$ Complex polarization vectors, section 2.3 and annex II.
- $\left|\frac{\hat{p}}{\hat{p}}\cdot\frac{\hat{p}}{\hat{p}_r}\right|^2$ Polarization efficiency for transfer of energy in free space at a single radio frequency, (2.11) and (II.62).
- q Time availability, the fraction of time a given value of transmission loss is not exceeded, section 10.
- q The ratio $q = r_2/sr_1$ used to compute ΔH_0 , (9.5).
- The length in free space of the direct ray path between antennas, figure 5.1.
- r Radius of curvature, (7.9).

- Effective distance for absorption by oxygen in the atmosphere, (3.4) figures 3.2 to 3.4.
- r Effective rain-bearing distance, (3.11) and (3.12) figures 3.10 to 3.13.
- r Effective distance for absorption by water vapor in the atmosphere, (3.4), figures 3.2 to 3.4.
- Length of a direct ray between antennas over an effective earth of radius a, figure 5.1.
- r,, r, Parameters used in computing the frequency gain function H, and defined by (9.4).
- r₁, r₂ Distances whose sum is the path length of a reflected ray, figure 5.1.
- \hat{r}_1 , \hat{r}_2 Direction of the most important propagation path from the transmitter to the receiver, or from the receiver to the transmitter.
- r_{1i}, r_{2i} Straight line distances from transmitting and receiving antennas to a point on the ground a distance x_i from the transmitting antenna, figure 6.4.
- r.m.s. Abbreviation of root-mean-square,
- R The magnitude of the theoretical coefficient R $\exp[-i(\pi-c)]$ for reflection of a plane wave from a smooth plane surface of a given conductivity and dielectric constant, (5.1).
- Re An "effective" ground reflection coefficient, (5.1).
- Rainfall rate in millimeters per hour, (3.10).
- R Surface rainfall rate, (3.10).
- R Cumulative distribution of instantaneous path average rainfall rates, figure 3.14.
- R(0.5) A function of $L_{dr} L_{cr}$, (9.14) figure 9.9.
- s Path asymmetry factor, $s = \alpha / \beta_0$, (6.19).
- T Reference absolute temperature, T = 288.37 degrees Kelvin.
- T(r) Temperature in the troposphere in degrees Kelvin.
- T ('K) Effective sky noise temperature in degrees Kelvin.
- T.A.S.O. Abbreviation of Television Allocations Study Organization.
- U(vρ) A parameter used in computing diffraction over a rounded obstacle, (III. 26) and figure 7.5.
- v A parameter used in computing diffraction over an isolated obstacle, (7.1).
- V(0.5, d_e) A parameter used with the calculated long-term reference value, L_{cr}, to predict median long-term transmission loss, figure 10.1 equations (15.4) and (III.67).
- V_n(0.5, d_e) The parameter V(0.5, d_e) for a given climatic region characterized by the subscript n, (10.4) figure 10.1.
- w_a, W_a Radio frequency signal power that would be available from an equivalent loss-free receiving antenna, W_a = 10 log w_a dbw, (2.2).
- w_a^i , W_s^i Radio frequency signal power available at the terminals of the receiving antenna, $W_a^i = 10 \log w_a^i$ dbw, (2.1).
- w_t , w_t Total power radiated from the transmitting antenna in a given band of radio frequencies, $w_t = 10 \log w_t$ dbw, (2.2).
- W Available power at the terminals of a hypothetical loss-free isotropic receiving antenna, assuming no orientation, polarization, or multipath coupling loss between transmitting and receiving antennas, (2.13).

- x A specified value, the discussion preceding (2.14).
- x A variable designating distance from an antenna, figure 6.4
- x. The ith distance from the transmitter along a great circle path, figure 6.4.
- x_0 , x_1 , x_2 Parameters used to compute diffraction loss, (8.2) figures 8.5 and 8.6.
- x₀, x₂₀ Points chosen to exclude terrain adjacent to either antenna which is not visible to the other in computing a curve fit, (5.15).
- \overline{x} The average of distances x_0 and x_{20} , (5.15b).
- X, Y Initial bearings from antenna terminals A and B, measured from true north, figure 6.3.
- y Terrain elevations, modified to account for the curvature of the earth, (6.10).
- y(x) Modified terrain elevation, $y(x) = h(x) x^2/(2a)$, (5.16).
- Y! Bearing from any point B' along the great circle path AB, figure 6.3.
- Y(q) Long-term variability of L or of W in terms of hourly medians, (10.6) and (V.4).
- Y(q, 100 MHz) Basic estimate of variability in a continental temperate climate, figure 10.2.
- Y(q, d, 100 MHz) Basic estimate of variability as a function of effective distance, (10.6) figure 10.2.
- Z Great circle path length between antenna terminals A and B, figure 6.3.
- Z' Great circle path distance between an antenna and an arbitrary point B', figure 6, 3.

- α The parameter α is defined in equation (3.9b) and plotted as a function of frequency on figure 3.9.
- α_{0} , β_{0} The angles α_{00} , β_{00} modified by the corrections $\Delta \alpha_{0}$, $\Delta \beta_{0}$, (6.19).
- α , β The angles between a transmitter or receiver horizon ray and a line drawn between the antenna locations on an earth of effective radius, a, (6.18) figure 6.1.
- $\alpha(f_{GHz})$ The function α in (3.9b) as a function of frequency in GHz, figure 3.9.
- Yoo Differential absorption in decibels per kilometer for oxygen under standard conditions of temperature and pressure, (3.4).
- γ_r Rate of absorption by rain, (3.8).
- Yrs Surface value of the rate of absorption by rain, (3.11).
- γ_{wo} Differential absorption in decibels per kilometer for water vapor under standard conditions of temperature and pressure and for a surface value of absolute humidity of 10 g/cc, (3.4).
- γ(r) Differential atmospheric absorption in db/km for a path length r, (3.1).
- $\gamma_r(r)$ Differential rain absorption along a path r, (3.7).
- $\gamma_0(h)$, $\gamma_w(h)$ Differential absorption in dB/km for oxygen and water vapor, respectively, as a function of height, h, (3.3).
- $\Gamma(r)$ Absorption coefficient as a function of path distance r, (3.2) and (3.6).
- δ_r , δ_t The effective half-power semi-beamwidth for the receiving and transmitting antennas, respectively, (9.11) and (9.12).
- δ_{w} , δ_{z} Azimuthal and vertical semi-beamwidths, (2.6).
- $\Delta \alpha_{\lambda}$, $\Delta \beta_{\lambda}$ Correction terms applied to compute α_{λ} , β_{λ} (6.19) figure 6.9.
- Depression of field strength below smooth earth values, (5.19).
- A correction term used to compute the effective height for high antennas, (6.12) figure
 6.7.
- The path length difference between a direct ray, r_0 , and a reflected ray, $\Delta r = r_1 + r_2 r_0$, (5.4), (5.9) and (7.1).
- Auxiliary functions used to check the magnitude of error in the graphical determination of diffraction attenuation, (8.5) figures 8.5 and 8.6.
- ΔH_0 A correction term applied to the frequency gain function, H_0 , (9.5) and figure 9.4.
- ΔN The refractivity gradient from the surface value, N_s , to the value of N at a height of one kilometer above the surface, (4.2).
- $\Delta \alpha_{0}(N_{g})$, $\Delta \beta_{0}(N_{g})$ The correction terms $\Delta \alpha_{0}$, $\Delta \beta_{0}$ for values of N_{g} other than 301, (6.21) figure 6.10.
- $\Delta\alpha$ (301), $\Delta\beta$ (301) The correction terms $\Delta\alpha$, $\Delta\beta$ for N = 301, (6.21) read from figure 6.9.
- Δh(h_r, N_s), Δh(h_t, N_s) The correction Δh_e as a function of N_s and of receiver and transmitter heights h_r and h_r, (6.12) figure 6.7.
- η_s A function of h and N used in computing F_o and H_o , (9.3) and figure 9.2.
- θ The angular distance, θ, is the angle between radio horizon rays in the great circle plane defined by the antenna locations, (6.19).

- θ_{\perp} , θ_{\perp} Horizon elevation angles at the receiver and transmitter, respectively, (6.15).
- Angle of elevation of a direct ray relative to the horizontal at the lower antenna, (5.12). See θ_b and $f(\theta_b)$.
- θ Angle of elevation above the horizontal, figures 3.2 to 3.4.
- θ Angle between radio horizon rays, assuming straight rays above an earth of effective radius, a, figure 6.1.
- θ or, θ the angular elevation of a horizon ray at the receiver or transmitter horizon, (6.16) figure 6.1.
- λ Free space radio wave length, used for example in (2.7).
- μ The ratio $δ_{-}/δ_{+}$ used in (9.12) and figure 9.8.
- A parameter that is half the value of η_s , used in computing loss in antenna gain, (9.11), (9.12) and figure 9.7.
- v Radio frequency in hertz.
- π A constant, $\pi \approx 3.14159264$.
- o Correlation coefficient between two random variables.
- ρ Index of curvature for the crest curvature of a rounded obstacle in the great circle path direction, (7.8).
- ρ_{ij} The correlation between variations due to sources i and j, (10.8).
- ρ_{1a} The correlation between variations Y and Y_a, (10.9).
- ρ_{1r} The correlation between variations Y and Y, (10.9).
- σ. The root-mean-square deviation of great circle path terrain elevations relative to a smooth curve fitted to the terrain, (5.1).
- $\sigma_c(p)$ The standard deviation corresponding to the variance $\sigma_c^2(p)$.
- Σ A symbol to represent the summation of terms, as in (5.15) where $\sum_{i=0}^{20} h_i$ means the sum of all values of h_i from i=0 to i=20.
- Φ(v, p) The total phase lag of the diffracted field over an isolated rounded obstacle with reflections from terrain, (7.13).
- $\Phi(v,0)$ The total phase lag of the diffracted field over an ideal knife edge with ground reflections, (7.13).
- Φ_{A} , Φ_{B} Latitudes of antenna terminals A and B, (6.1) to (6.9) figure 6.3.
- Φ_{B^1} Latitude of an arbitrary point along the great circle path from A to B, (6.7).
- Ψ The grazing angle of a ray reflected from a point on the surface of a smooth earth,
 (5.1) figure 5.1, or grazing angle at a feuillet, annex IV.
- ψ_m Minimum grazing angle, section 5.1
- ψ_p The acute angle between principal polarization vectors $\overset{\cdot}{e}$ and $\overset{\cdot}{e}_{pr}$, (2.11). Ω_r , Ω_t The half-power beamwidths of the receiving and transmitting antennas, respectively.
- $\Omega_{\rm r}$, $\Omega_{\rm t}$ The half-power beamwidths of the receiving and transmitting antennas, respectively, (9.10).